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1. I n t r o d u c t i o n  

A subset A C G of an (additively written) group G is said to be s u m - f r e e  if 

no al, a2, a3 E A satisfy the equation al + a2 = a3. In [A91], Alon proved that 

the number of sum-free subsets of any group G of cardinality n = [G[ is at most 

2(1/2+°( 1))" (as n ~ ec) and asked about ihe sharp form of this result. In the 

present paper we answer Alon's question for G abelian. 

THEOREM 1: There is an absolute constant ~ > 0 such that the number of 

sum-free subsets of any abelian group G of cardinality n = [G[ is 

(2"(a) _ 1)2"/2 + 0(2(1/2-~)n), 

where u(G) is the number of even order components in the canonical decompo- 

sition of G into a direct sum of its cyclic subgroups, and the implicit constant in 

the O-sign is absolute. 

Throughout the rest of the paper, G is a finite abelian group of cardinality 

n; whenever appropriate, we tacitly assume n to be sufficiently large. We write 

SF[G] for the set of all sum-free subsets of G. Let H c_ G be a subgroup, and 

let A E SF[G/H]. Suppose that a subset A C_ G satisfies ~H(A) = A, where 

~OH: G ~ G/H is the canonical homomorphism. Then plainly A E SF[G], and 

we say that  A is induced by ~i. For H = G, no non-empty sum-free subset of G is 

induced by a sum-free subset of G/H. If [G : H] = 2 (that is, H is an index two 

subgroup of G), then the sum-free subsets of G induced by a sum-free subset of 

G/H are all sets A C_ G \ H; it will be seen that  it is these sets that contribute 

the main term to the asymptotic formula of Theorem 1. On the other hand, let 

SF*[G] be the family of all A E SF[G] not induced by any A E SF[G/H], where 

H is an index two subgroup. We prove that  this set is small; more precisely, we 

have 

MAIN LEMMA: There is an absolute constant 6 > 0 such that 

ISF*[G]I = o(2(1/2-z)"), 

where the implicit constant in the O-sign is absolute. 

In particular, the number of all "primitive" sum-free subsets of G (not induced 

by any A E SF[G/H] for a non-zero subgroup H)  is 0(2(1/2-~)"). A result 

due to two of the present authors ([LS, Theorem 1]) shows that  for p prime, 

I SF[Zp]I >> 2 p/3 p; therefore, 1/2 - 6 in the exponent cannot be replaced by 1/3. 

Theorem 1 will be deduced from the Main Lemma in Section 2, and the Main 

Lemma will be proved in Sections 3-7. 
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We now make several historical comments. 

The first to consider sum-free sets was probably Schur with his celebrated 

theorem which states that  it is impossible to partition the interval [1,n] into 

a fixed number of sum-free subsets, provided that  n is large enough compared 

to the number of subsets. In ICE90], Cameron and Erdhs investigated some 

properties of sum-free subsets of [1, n] and conjectured that the number of such 

subsets is O(2~/2). (The motivation for this conjecture is that the vast majority 

of sum-free sets A c_ [1, n] are actually believed to be subsets of either the set 

{1, 3 , . . . ,  2[(n - 1)/2] + 1}, or the set [[(n + 1)/2], n].) Having attracted much 

attention, the conjecture of Cameron and Erdhs is, nevertheless, still open. One 

can expect that the problem gets easier if the condition al + a2 ¢ a3 (ai E [1, n]) 

is replaced by the stronger and more restrictive condition al + a2 ~ a3 (rood n); 

that is, if sum-free subsets of [1, n] are replaced by sum-free subsets of Zn. Indeed, 

Theorem 1 implies at once that [ SF[Z,~][ = o(2n/2),  which can be viewed as a 

weak form of the conjecture. 

For a survey of other results concerning sum-free sets and their generalizations 

we refer the reader to [B98, LS]. The rest of the paper is devoted to the proofs 

of Theorem 1 and the Main Lemma. 

2. D e d u c t i o n  o f  T h e o r e m  1 f r o m  t h e  M a i n  L e m m a  

LEMMA 1: The number of subgroups of G is at most 2 (l°g~ n)2. 

Proof: Plainly, any subgroup of G can be generated by at most [log 2 nJ elements. 

If we do not require the elements to be distinct, then exactly [log 2 nJ generators 

can be used. Thus, the number of subgroups does not exceed the number of ways 

to choose [log 2 nJ elements of G, which is at most 

n[l°g~n] ~ 2(l°g2n) 2. | 

LEMMA 2: The number of index two subgroups of G is 2 v(c) - 1, where u(G) is 

the number of even order components in the canonical decomposition of G into 

a direct sum of its cyclic subgroups. 

Proof: Let N(G) be the sought number of index two subgroups, so that  for 

instance, N(G) = 0 if G is cyclic of odd order and N(G) = 1 if G is cyclic of 

even order. It suffices to prove that N(G1 @ G2) + 1 = (N(G1) + 1)(N(G2) + 1) 
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for any two finite abelian groups G1 and G2. For this, notice that if H1 and H2 

are index two subgroups of G1 and G2, respectively, then each of 

H1 @ G2, G1 • H2, and (H1 G/-/2) tA ((G1 \ H1) G (G2 \ H2)) 

is, evidently, an index two subgroup of G1 • G2. The number of all these sub- 

groups is N(G1)+ N(G2)+  N(G1)N(G2), and we leave it to the reader to verify 

that any index two subgroup of G1 • G2 has this form. | 

By the Main Lemma, to prove Theorem 1 we only need to count all sum-free 

A C_ G induced by some A • SF[G/H], where H is an index two subgroup. For H 

fixed, such A are those subsets of G contained in the complement of H, and their 

number is 2 n/2. Furthermore, if H1 and H 2 a r e  distinct index two subgroups and 

A is contained in both complements G \ Hi, then A C_ G \ (H1  UH2); for H1 and 

//2 fixed, the number of such A is at most 2 n/4. Now by the inclusion-exclusion 

argument and Lemmas 1 and 2, the number of A in question is 

E 2n/2--0( E 2n/4) 
HC_G H1,H2C_G 

[G:H]=2 [G:H~]=2 

= (2"(a) _ 1)2-/2 _ o(2n/4+2(log~ n)2). 

Theorem 1 follows. 

3. Auxiliary results 

We collect here some facts that will be used in the proof of the Main Lemma. 

Let A be a subset of G. The per iod ,  or s tabi l izer  of A is the subgroup of G 

defined by 

H(A) := {g • G: A + g  = A}. 

In other words, H(A) is the maximal subgroup of G such that A is a union of 

H(A)-cosets. The following theorem is essentially due to Kneser [Kn53, Kn55]; 

the version presented below can be found, for instance, in [Ke60, Theorem 3.1]. 

(In fact, it can be derived easily from Kneser's original result.) 

THEOREM 2: Let A and B be finite, non-empty subsets of an abelian group G. 

Suppose that [A + B[ <_ IAI + ]B I - 1. Then 

[A + B[ = [A + HI + [B + HI - IH[, 

where H = H(A + B). 
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LEMMA 3: Let B C_ G be a finite, non-empty subset of  G, not contained in a 
2 coset o f  a proper subgroup. Suppose, moreover, that IBI <_ 5IGI. Then there 

exists an element b • B such that I(B + b) n BI _< -~IBI. 

Proof: For g • G, define fB(g) := I(B + g) "- BI = IBI - I(B + g) n BI. This 
function is often referred to as the function of ErdSs Heilbronn-Olson; its basic 

properties include 

(1) 
(2) 

and 

f . ( g )  = fB(g), 

fB(gl -}- g2) ~ fB(gl) -t- fB(g2), 

(3) ~ fB(g) : IBIIB - B I -  IBI u. 
gC:_B- B 

(All this is easy to verify.) By averaging, we derive from (3) that  there exist 

bl, b2 C B such that  

and since fB(bl  -- b2) <_ f s ( b l )  + fB(b2) by (1) and (2), we have 

1 (1 

either for b = bl or for b = b2. Now 

1 ( 2 _ B _ , . , )  I(B + b) n BI = IBI - fB(b) <_ 7 IBI 1 + I 

and it remains to observe that  IB - B{ _> ~ IBI by Theorem 2: otherwise, letting 

H := H ( B  - B),  we get 

IB + HI >_ 71BI > IB - BI = 21B + HI - Igl, 

IB + HI < 21HI, 

whence IB + HI = IHI and B is contained in a coset of H.  Thus H = G or 

equivalently B - B = G, and therefore a ~IBI > ICl, a contradiction. I 
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LEMMA 4: For any positive integer y and real x > y - 1 we have 

Proof: Using induction by y (or by a quantitative version of the Stirling formula) 

one obtains y! > (y/e) ~, hence 

< - - <  e . . 

We will need an estimate for the tails of binomial and hypergeometric distribu- 

tions. Recall that  X is distributed binomially with parameters  k and p if it at tains 

values from the interval [0, k] with probabilities Prob{X = i} = (~)pi(1 - p ) k - i  

and in this case its expectation is EX = kp. Furthermore, X has a hypergeomet- 

ric distribution with parameters  N, k, and m, if it at tains values from the interval 

[O,N]withprobabili t iesProb{X=i} (ki) ~ k + m  = (N-S) / ( N ); the expectation of such 

a random variable is E X  = mk/N.  

LEMMA 5 ([JLR00, Theorems 2.1 and 2.10]): Suppose that X has either a bino- 
mial or a hypergeometric distribution. Then for any 0 < ~ < 1 we have 

Prob{X <_ ( 1 -  e)EX} <_ e x p ( - ~  EX) ,  

and 

Prob{X >_ (l + e)EX} <_ e x p ( - ~  EX) .  

4. Popular  differences 

We continue our preparations for the proof of the Main Lemma. Kneser's theorem 

shows that,  "normally", the sumset A + B contains at least IAI + I B I -  1 elements. 

In this section we consider the case B = - A  so that  A + B becomes the difference 

set A - A and show that,  "normally", this set contains at least 2}AI(1 - o(1)) 

elements with large number of representations as a difference of two elements of 

A. 

For a subset A c_ G of any (not necessarily finite) abelian group G and a 

non-negative integer K,  we denote by DK(A) the set of all those elements g E G 

which have at least K distinct representations as g = al  - a2 (with al ,  a2 C A). 

PROPOSITION 1: Let A C G , K  E Z +, and DK(A) be as above. Suppose that  

]DK(A)I <_ 21AI- 5v/KIA - A I. 
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Then there is a subset A p C_ A such that 

]A \ A rl <_ v / K I A -  A[ and A' - A p C_ DK(A) .  

The proof of Proposition 1 relies upon the following graph-theoretic lemma. 

LEMMA 6: For any graph F = (V, E) o[ average degree d >_ (1 - A)]V], there 

exists an induced subgraph F ~ = (W, E ~) such that 

(i) IV'l _> (1 - v~)lVl;  

(ii) ~(Fr) > (1 - 2v~)lWl (where ~(r ' )  is the minimal degree ofF ' ) .  

Proof  We define F ~ to be the subgraph of F, induced by all vertices v E V of 

degree d(v) > (1 - x/~)]V]. We have 

d i n  = Y~ d(v)+ ~ d(v) 
d(v)((1-~/-~)lV] d(v)>(1--v/~)]Vt 

_< (1 - v ~ ) l V l ( l V  I - I V ' l )  + tv l l v 'h  

(1 - A)]VI _< (1 - v 'A)(IVl  - IV'}) + IV'l 

= (t - v ~ ) l V l  + v'~lV'l,  

IV'l > (1 - v~) Iv l ,  

which proves the first assertion. To prove the second assertion, notice that  the 

degree in F r of any vertex v J E W is greater than 

(1 - v ' ~ ) l V  I - (IV] - IV'I) = I V ' ] -  v 'A]V I _> (1 - 2 v ' ~ ) ] V ] .  | 

Proof of Proposition 1: We can assume that K < IAh as otherwise v / KIA  - A I 

> IAI and the assertion is trivial. 

Consider the graph F -- (A, E)  on the system of vertices A, where (al, a2) E E 

if and only if al - a 2  C DK(A).  The edges of the complement of F correspond to 

elements c E (A - A) \ DK(A) .  Any such element yields at most K - 1 edges, 

and elements c and - c  yield the same edge. Therefore, the number of edges of 

the complement is at most 

~ ( K -  1 ) I ( A -  A) \ DK(A)I <_ I ( K -  1 ) I A -  AI, 

the number of edges of F is at least 

 ll ll,aa, 
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the average degree of F is at least 

IAI - 1 - ( K -  1 ) I A -  AI/ IA t >_ IAI - K I A -  AI / IA I = I A I ( 1 -  K I A -  AI/IAI2), 

and by Lemma 6 there is a subgraph F' = (A', E')  such that  

IA'I >_ tAI(1 - v / K I A  - Ai / iAI  2) = t A I -  v / K I A  - AI, 

and for any a '  E A' the neighborhood N(a' )  of a '  in F'  is "large": 

IN(aP)l > IA[- 2 v / K I A  - AI. 

Assume that  A p - A'  ~= DK(A)  (otherwise we are done). Then there exist two 

elements a t and a[  of A' such that  a~2 - a'l ¢ OK(A) ,  and hence the number of 

representations of a~ - a t as a difference of two elements of A does not exceed 

K -  1. It  follows that  

](a t - N ( a t )  ) n (at2 - N(a~2))] <_ K - 1, 

and since a'j - N(a~) c_ DK(A)  (j = 1, 2), we conclude that  

IDK(A)I >_ Ig(a t ) l  + IN(a'2)l - ( g  - 1) 

> 21A I - 4 x / K [ A  - A I - g > 21A I - 5 v / K I A  - A 1. II 

Why are we interested in the elements of A - A with a large number of repre- 

sentations? Suppose that  any A E SF[G] contains a "small" subset R, such that  

its difference set R - R is "large". Since the number of possible sets R is small 

(as IR[ is small), and since the number of sets A corresponding to a given R is 

small also (as A c_ G \ ( A  - A) C_ G \ ( R  - R)), this would help us to bound the 

total  number of A possible. Indeed, it is easy to show that  there exists a "small" 

R such that  R - R contains the set DK(A)  with a suitably chosen K.  

LEMMA 7: For any A C_ G, any p E (0, 1), and any integer K >_ 0 such that 

p2K _> 6 In n, there exists a subset R c_ A with the following properties: 

(i) IRI <_ 2plAI; 

(ii) D K ( A )  C_ R - R. 

Proof'. Let R C_ A be a random subset of A for which the elements of A are cho- 

sen randomly and independently with probability p each. Plainly, the expected 

cardinality of R is plAI, and by Markov's inequality, (i) holds with probability at 

least 1/2. 
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Fix d E DK(A). For any representation d = al - a2 (al,  a2 E A) there are 

at  most  two other  representations of  d of  this form in which al  or a2 are used 

(there can be one representat ion d = a3 - al  and one d = a2 - a4). As the total  

number  of representations is at least K ,  we can select at  least K/3  representations 

disjoint in the sense tha t  no a C A is used in two distinct representations. The 

probabil i ty tha t  a given representat ion "survives" in R is p2, the probabil i ty 

tha t  it is destroyed is 1 - p2, the probabili ty tha t  all selected representations are 

destroyed is less then or equal to (1 p2)K/3; thus, 

Prob{d  ~ R - R} _< (1 - p2)g/3 < e-p2g/3 ~_ 1/n 2, 

whence 

Prob{DK(A) ~= R -  R} < ~ P r o b { d • R - R } < l / n .  
deDg (A) 

Therefore, (ii) holds with probabil i ty at least 1 - 1/n > 1/2, and the result 

follows. | 

Below we choose K = Ln2/3j, p -- n-1/7/2, and think of R as being associated 

with A uniquely; in other  words, for each A we select and fix one part icular  set 

R of all those, the existence of which is guaranteed by Lemma 7. We abbreviate 

DK(A) by D; thus, we have 

(4) ] R I < n  ~/~, D C R -  R. 

5. Pro o f  of  the  Main  Lemma, I. Small sum-free sets 

To prove the Main Lemma we split the family of all sum-free subsets of G into 

several sub-families and show tha t  each of them contains not  more than  2 (1]2-5)n 
sets for some constant  5 > 0. In this section we est imate the number  of  sum- 

free subsets of  cardinali ty less than (1 - e)n/4, where ~ is a positive constant .  

We follow closely Alon's  argunlent from [A91] and use some of his intermediate 

results. 

Recall tha t  a graph F is r - r e g u l a r  if each vertex of F has degree r, and tha t  

a subset A c_ V(F) is i n d e p e n d e n t  if it induces an empty  subgraph of F. 

LEMMA 8: Let c > 0 be fixed. Assuming r to be large enough, for any r-regular 

graph F on n vertices the number of independent sets of at most (1 - e )n /4  

vertices of F is smaller than 2 n/2-~n/6. 

Proof'. Alon [A91, Corollary 3.2] showed tha t  there is a spanning bipart i te  

subgraph F ~ C_ F such tha t  the degree of any vertex of F t is between r / 2  - r5/S/2 
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and r/2 + r5/S/2. Let E be the edge set, and let U and V be the partite sets of 

F', labeled so that  IUI < IVI. Then evidently 

I V l ( r / 2 -  r s / s /2 )  < IEI < IUI(r/2 + rS/S/2), 
I V l ( r  - r 5Is) < (n - IVt)(r + rs/s), 

whence 

IVI < m : =  k~(1 + r-3/s)12]. 

Let I(s, t) denote the number of all t element subsets of U which have exactly 

s neighbors in V. By [A91, Corollary 2.5], there exists an absolute constant C 

such that for every t >_ 2m/v/-~ we have 

I(s,t)<__ (s+Ctr-1/7). 

On the one hand, the number of independent sets A with at most t := [ (1 - e )n /4 ]  

elements satisfying t := IA N U] < [2m/v ~ is bounded from above by 

0_<t< [~/VFI 

On the other hand, the number of independent sets A of cardinality i :-- IAI _< 

with t :-- IA n U I >_ 2m/v~  does not exceed 

E E 
~=r2,,,l ~ ,=r2 . , i . ,~  

<- E E 
£ i 

-< Z E 
i =  r 2r~ l v ~  t =  r 2.~ l , fet  

< n e  t~ ) . 

{vt+t-i 

z I(s,)C',l 
s:O 

]V]+t-i 

s----0 

Thus, the total number of independent sets with at most ~ vertices is bounded 
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from above by 

nr2m/vrC(i~)~-n3eC'r-~/T(~ ) ~n32Cnr-~/r(~) 

£ 

i=O 

The latter sum is the probability that  a random variable, distributed binomially 

with parameters  m and 1/2, attains value not larger than £ < (1 - e)n/4 < 

(1 - e)m/2;  by Lemma 5, this sum does not exceed e -° '25~'~, and it remains to 

observe that  

n32Cnr-1/r +me -0"25e2m ~ 2 n/2-e2n/81n2+2Cnr-1/7 ~_ 2 n/2-een/6. I 

LEMMA 9: Let ~ > 0 be fixed. Assuming n to be large enough, we have 

#{A • SF[G]: IAI _ (1 - e)n/4} = O(2 (~/e-~/7)n) 

(where the implicit constant in the O-sign depends on e only). 

Proo~ Let r : [lognJ. Given a sum-free set A C_ G of cardinality r < [A t _< 

( 1  - ¢)n/4, select an r-element subset B C_ A and define r0 := [B U ( - B ) h  so 

that  r <: r0 _< 2r. Consider the graph on the vertex set G, in which two vertices 

u and v are adjacent if and only if u - v E =LB. This graph is (r0)-regular, 

and each A C SF[G] containing B is its independent set. (Otherwise, we would 

- a" A.) Thus, by Lemma 8 the number of h a v e a  r a" E B C_ A f o r s o m e a  ~, E 

A E SF[G] with at  most (1 - ¢)n/4 elements does not exceed 

r - 1  

I t  is worth pointing out that  our Lemma 9 is "parallel" to a result of Bilu [B98, 

Theorem 1.1], where a similar estimate for the number of sum-free subsets of the 

interval [1, n] is established. Bilu's result implies at once the desired estimate 

for the group Zn; however, his approach, based on Szemer~di's theorem, is not 

applicable for a generic abelian group G. 
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6. P r o o f  of  t h e  M a i n  L e m m a ,  II .  Smal l  (popular )  d i f ference  sets  

First, we estimate the number of A • SF* [G] for which D is "small". 

LEMMA 10: The number of A • SF*[G] satisfying 

IDI _< 21A I - 5n5/6 

iS 0(20"46n). 

Proo~ As 21A I - 5n 5/6 _~ 21A t - 5v /KIA  - AI, by Proposition 1 for any A under 

consideration there exists A' C A such that 

(5) 

and then 

IA'J >_ IA[ -  v/KIA - AI >_ IA) - n 5/6, A' - A' C_ D, 

IA' - A'I <_ IDI <__ 2[A[-  5n 5/6 ~ 21A' I - 3n 5/6. 

Thus, letting H := H ( A ' - A ' ) ,  by Theorem 2 we get I A ' - A '  I -= 21A' + H I - I H I ,  

whence 
2(IA' + HI - IA'I) < ]HI - 3n5/6 

and we conclude that 

(6) IHI ~_ 3n 5/6 and IA' + H i - IA'l < {HI/2. 

We now observe that [G : HI ¢ 1, since otherwise A ' - A '  = G (contradicting the 
fact that  A' is sum-free), and similarly [G : HI ¢ 2, since otherwise A' - A' = H, 
A C_ G \ ( A '  - A ~) = G \ H and A is contained in the complement of an index 

two subgroup. Therefore, we have 

(7) Igl <_ n/3. 

Furthermore, we note that  

(8) IA' + H I <_ n/2  

(else for any g • G by the pigeonhole principle holds (A '+H)V~(g+(A '+H))  ~ O, 

hence g • (A' + H ) -  (A' + H)  implying that A ' -  A' = (A' + H ) -  (A' + H) = G), 

and that by (6) and (7) 

(9) IA' + H i - Id'l < n/6. 

We now make the counting. To each A there correspond a set A' and a 

subgroup H. The number of subgroups H possible is, by Lemma 1, less than 
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2 (l°g2 n)2, and for any H given the number of sets A t ÷ H  possible is at most 2 ~/IHI; 

thus, by (6) the number of choices for A t+  H is at most 2 (l°g~ n)22 (nl/6/3) -- 2 °(n). 

Next, by (8) and (9) for any A t + H given, the number of sets A ~ possible is at 

most 

O<i<n/6 

Finally, by (5) for any A' there are at most 

x (:) =2o n  
O<i<_nS/6 

corresponding sets A. Put t ing everything together, we see that  the total  number 

of A is at most 
2o.4592n+o(-) = O(2°.46n). | 

Having established Lemma 10, we can concentrate on sets A such that  

(10) Inl > 21A I - 5n 5/6. 

Moreover, by Lenlma 9 we can restrict ourselves to studying the sets A of cardi- 

nality 

(11) IAI > n /4  - 10-Sn. 

In our next lemma we count A which, in addition to these two properties, have 

"small" difference set. 

LEMMA 11: The number  of A c SF*[G] satisfying (10), (11), and 

IA - AI <_ n /2  + 10-7n 

iS O(20"42n). 

Proof Consider the set R c_ A with properties (4). By (10), (11) and the 

assumptions of the lemma we have 

IR - R[ _> ]D I > 2IAJ - 5n 5/6 > n/2 - 3- 10-Sn > IA - AI - 2 . 1 0 - 7 n ,  

hence one can add to R at most 4 . 1 0 - 7 n  elements of A to obtain a set A" C_ A 

of cardinality IA"I < IRI + 4 . 1 0 - 7 n  < 5 . 1 0 - T n  such that  A" - A" = A - A. 
Tt  

Clearly, such an A" can be chosen from G at no more than n(is.lo_Tnj ) ways. 
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We put B := A" - A" = A - A and note that  A c_ a - B for every a • A. 

If  B is contained in a coset of a subgroup H C G, then so is A, and in this 

case k := [G : HI >_ 3: otherwise, A and A - A are disjoint subsets of H,  whence 

1 
~ n = l H I _ > I  A - A  I + I A [ > I D I + I A I > 3 1 A  I + o ( n ) >  ~ n - 4 . 1 0 - S n ,  

a contradiction. For H given, the number of A contained in an H-coset is at 

most k2 IHI = k2 '~/k < n2 n/3, hence by Lemma 1 the total  number of A • SF*[G] 

for which B is contained in a coset of a proper subgroup is 0(20"34"). 

Suppose now that  B is not contained in a coset of a proper subgroup. Applying 

then Lemma 3 to the set B, we find an element b = a l  - a 2  (a l ,a2  • A) with the 

property that  

5 
I(al - B) n (a2 - B)I = t ( - B )  n ( - ( a l  - a2) - B)I = IB n (b + B)I _< ~lBI. 

Notice that  B _~ a i - A ,  whence A C_ a i - B  for i = 1,2. Thus, once al,a2, 
and A" are selected, the remaining elements of A axe to be chosen from the set 

(al - B) n (a2 - B) of cardinality at most 5 (n/2 + 10-Tn). Consequently, the 

number of possible sets A satisfying the assumptions of the lemma is at most 

n3 ([5.10-Thin ]~ 2 ~(1/2+10-~)n -- O(2°'42n). I 

7. P r o o f  o f  the  Main  Lemma~ III. Conc lus ion  

We now take care of the remaining and most complicated case, that  of A, A - A, 

and D all "large". More precisely, by Lemmas 9, 10, and 11, to conclude the 

proof of the Main Lemma it suffices to count A • SF[G] such that  (10), (11), and 

(12) I A -  A] > n/2 + 10-Tn 

hold. 

Since the proof is somewhat technical, we first describe briefly its main idea. 

To construct A we first choose the small subset R C A. The remaining elements 

of A must then be selected from the set G \ ( R  - R), the cardinality of which 

is n - ]R - R I _< n - ]D I < n/2 + 3 . 1 0 - S n  (only slightly exceeding n/2 in the 

worst case). We select A \ R in two rounds, first choosing a set Z C_ A of []AI/2J 

elements, and then finding A \ (R U Z). If Z is chosen "at random", then each 

element d E A - A with probability at  least 1/4 belongs to Z - Z. Hence, we 
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can expect that 

I(Z - z )  \ ( n  - n)l 
] 

_> ~ ] ( A -  A) \ ( R -  R)I 
I 

1 
= ~ ] A -  A I - ~ ] R -  R], 

I ( n u  Z) - ( R u  Z)l > I(Z - Z) u (n  - R)I 

>_ ~ t R -  RI + ~ I A -  A[ 

1 
_> ~lD] + ~(n /2  + 10-Tn) 

>_ ~,A, + ~n + ~ l O - T n - 4 n  5/6 

1(I _> ~ n +  10 - 7 -  10 -s  n - 4 n  5/6 

1 
> -~n+hn 

(with some 5 > 0). As A C G \ ( ( R U Z )  - (RUZ)) ,  we expect that after choosing 

Z, the set A \ (RUZ) is to be chosen from at most n - I ( Z U R ) - ( Z U R ) I  < n /2 -~n  
elements of G; hence, the number of choices for A \ ( R  U Z) is bounded from 

above by 2 n/2-hn. This is small enough to compensate for the choices of R and 

Z. Unfortunately, a fair amount of work is needed to make the above argument 

rigorous. The main difficulty is that if dl, d2 C A - A and Z is a random subset 

of A \ R ,  then the events that  di E ( Z U R ) -  ( Z U R )  for i = 1,2 are not 

independent. Hence our main task will be, roughly speaking, to approximate 

I(Z U R) - (Z U R)] by a sum of independent random variables. 

For A (and therefore, R = R(A)) given, let X = X(A)  be a set of pairs 

(b~, b~') (b~, b~' • A) which satisfies the following conditions and is maximal subject 

to these conditions: 

(i) all differences b~ - b~ r are pairwise distinct and do not belong to R - R; 

(ii) {b~, b~'} n {b}, by) c_ R (for any i ~ j) .  

We put X b = ui{b~, b~'} so that by the maximality of X, for any d • A -  A there 

is a representation d = a ~ - a" such that  either a ~ • R U X b, or a" • R U X b. 
(To see this, consider separately the cases d • R - R; d = b~ - b~' for some i; and 

d ~ R -  R ,d  ~ b~-b~'.) 
Next, we introduce yet another set of pairs associated with A: specifically, let 

Y = Y(A)  be a set of pairs (c~, c~') (c~ • R U X  b, c~' • A \ ( R U X b ) )  which satisfies 

and is maximal subject to the following conditions: 
l H (i) all differences c i - c i are pairwise distinct and do not belong to (R U X b) - 

(R u Xb; 
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(ii) c~' # c~ (for any i # j) .  

We put Y¢ = Ui{c~'} and note that R U X b U Y~ C_ A, and moreover, 

(13) ( R U X  b UYC) - ( R U X  b U Y¢) = A -  A. 

(To verify, assume that d C ( A - A )  \ ( ( R U X  b) - (RUXb)) and write d = a ' - a " ,  

where exactly one of a', a" belongs to R U X b. Now if d = +(c~ - c~') for some i, 

then d e + ( (R  U X b) - yc) ;  otherwise (a', a"),  (a", a') ¢ Y and the maximality 

of Y shows that of the elements a r and a" one which does not belong to R U X b, 

belongs to y c  __ whence, again, d E +( (R u X b) - yc) . )  

We split the proof into three cases, depending on the cardinalities of X and 

Y. We set m = IA - A I and mo = Ln/2 + 10-TnJ; thus, m > m0 by (12). 

CASE 1: IXl < ( m -  n / 2 ) / l O  6 and IYI < ( m -  n /2 ) / lO0 .  

To construct A, we first choose the set R U x b u  y c  of cardinality i := 

IR U X b U YC I < (m - n / 2 ) / 9 9  and then select other elements of A. By (13) 

and in view of A N (A - A) = O, the number of sets A satisfying all of the 

assumptions is at most 

L(m-n/2)/99J 

E E 
m>mo i=1 

< n 2 

< n 2 

< n 2 

max ( r (  n ] ) 2 n _  m 
-~_>~o m - n / 2 ) / 9 9  

(_9o e 
max 2 n - m  

m>mo \ m -- n/2 ] 
(2.7. 109)(~-n/2)/99+12 n - m  m a x  

m~mo 

m a x  2 ( (m-n/2) /99+1)  1n(2"7'1°9)/In 2 + ( n - m )  
m~mo 

< max 20"32(m-n/2)+(n-m)+32 

-- 20.32(mo-n/2)+(n-mo)+32 

= o(2n/2-O.6S'lO-Tn). 

CASE 2: tXI < (m - n / 2 ) / l O  6 and IYI > (m - n /2 ) /100 .  

Again, we build a set A in several steps. First we choose R and X b. Then, we 

select LIAI/2J elements o fA " . ( R U X  b) and, finally, the remaining [AJ- IRuXbl- 
LIAI/2J elements of A. More formally, for a given R and X, instead of counting 

sum-free sets A with A _D (R U Xb), we shall estimate the number w of pairs of 

sets (Z, A \ ( R U  X b U Z)), where Z c_ A \ ( R U  X b) and IZI = [IAI/2J. Our hope 

is that,  since Z contains half of the elements of A, it will contain a considerable 
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fraction of elements of Y¢ and thus substantially decrease the nunlber of choices 

for the elements from A \ ( R  U X b U Z). 
For given positive integers k and l, let us count such pairs with ]A] = k and 

[R U xb[ = l. We first estimate the number w~,e of the pairs (Z, A \ (R U X b U Z)) 
for which 

(14) IZ n Y2 -< IYI/3. 

Thus, we fix set A and count the number of all subsets Z of A with Z C_ 

A "-(R U xb), [Z t = [k/2J for which (14) holds. Equivalently, we may estimate 

the probability that for the random subset Z, chosen uniformly at random from 

all subsets o fA \ ( R U X  b) with LiAi/2J elements, we have [ZNYC[ <_ [Y]/3. Note 

that the random variable y = IZ n Y~[ has the hypergeometric distribution with 

parameters [A[ -  IR u xb[, [Y[, and HA[/2J. In particular, for the expectation of 

y we get 

IYI. LIAI/2J > IYI 
IAI - IR u Xl 2 

Hence, Lemma 5 gives 

Prob{IZ n Y~I <- IYI/3} = Prob{lYl _< IYI/3} 
mo --n/2~. 

_< exp(-IYI/lO0 ) _< exp(  10 4 ] 

Thus, to estimate w ~ it is enough to bound the number of choices for A and k,~, 
multiply the result by 

k - ~  
104 ]" 

Consequently, from the assunlptions we have IR - R I  _> hi2 - 3 .10-17n ,  and 

_< 3(m - n/2)/106, so that 

( 1 5 )  

mo 

n 

( 106n_ e-32) 3(m°-"12)lz°%'2.12+3.10-"~ 
_< n t, m o  - n / 2  " 

= O(rt(lO13e-32)3"lO-13n2n12+ 3"10-17n) = o(2n/2-2"lO-13n). 
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Now we estimate the number of pairs wg, t (IAI = k and IRuXbl = ~) for which 

(14) does not hold. Note that  in this case 

I ( R U X  bU Z) - (RU X bU Z) I > I R -  R I + IYl/3 

> n/2 - 3n/1017 + (m - n/2)/300 

> n/2 + (m - n/2)/400. 

Hence, choosing first R U X b, then Z from at most n - I(R U X b) - (R U xb)] 
elements and, finally, selecting A \ ( R  U X b U Z) from the available set of not 

more than n/2 - (m - n/2)/400 - UAI/2] elements, we arrive at 

W II 
~,~ <- E (n )  (n/2+3.10-17n'~ (n/2 (m n /2 ) /400-Lk /2 j ) .  

~_>~o [k/2j ] k e -  [k/2j 

Because of the combinatorial identity 

3. lO-17n-Lk /2J)  = (n/2+3.lO-17n'~ k - ~  ( )  
kk/2J ] ~ k - e -  l k / 2 j  k - ~ ] , L k / 2 J ~ '  

I I  

we can bound ~ from above by 
tt~/21) 

2n/2+3"lO-17n E 
m ~ m o  

(n12- (m-n/2)/400- Lk/2J 

{n/2+a.10-17n- [k/2j'~ 
k - ~ -  [k/2J J 

e n  

_< 2~/2+3.1o-'~ ~ ([3(m_n/2)/lO6]) 3(m-'~/2)/1°°+1 
/ n / 2  - (m - n / 2 ) / 4 o o  - ik/2J ~o.ln 

) 
< n2~/2+3.1o-~7 n (  • en .~3(mo-n/2)/10%l 
- \ 3(too - n/2)/lO 6 ] 

x (1 m o -  n/2~ TM 

= O(n2"~/2+a'lo-~104(rao-n/2)/lo52-(~o-n/2)/2"loa ) 

= O(2,~/2-1o-'~-). (16) 

Note that if by ak,t we denote the number of all sum-free sets A with ]A I = k 

and ]R U xbl = ~, then 

ak,e [k/2J = ]{(Z'A\(RuXbu Z): IAI = k, IRUXbI = / , A  e SF[G]} I 

l ~ w l l  



Vol. 125, 2001 SUM-FREE SETS IN ABELIAN GROUPS 365 

Hence, from (15) and (16) we infer that the number of subsets A E SF[G], for 
which tXt < (m - n/2)/ lO 6 but ]YI -> (m - n/2)/100, is bounded from above by 

Wt tl 

CASE3: IXI > ( m -  n/2)/ lO 6. 
As in the previous case we first select all elements from R and then count pairs 

(Z, A "-(R U Z)), where Z C_ A \ R and IZl = [IAI/2]. 
Thus, fix k = IAI and l = IRI- Let ~ '  k,t count pairs (Z, A \ ( R  U Z)) such that 

z c A "-R, IZI = [IAI/21, and the number s(Z, A) of elements (b', b") E X for 

which b', b" E R U Z is at most Ixl/10. As before, we estimate s(Z, A) for the 

random subset Z of A \ R of LIAI/2A elements. 

The distribution of s(Z,  A) is neither hypergeometric nor binomial, so we can- 

not apply Lemma 5 directly. Thus, instead of Z, we study the random set X, 
obtained by putting an element x E A "-R into X with probability 2/5, inde- 

pendently for each x E A \ R. Since the function s(., A) is non-decreasing, we 

have 

Prob{s(Z,  A) <_ IXI/10} <_ Prob{iX I _> IZI} 

+ e rob{{s(X,  A) _< IX]/10} A {IXI _< tzI}} 

_< Prob{lX I _> []AI/2J} + Prob{s(X, A) _< [X]/10}. 

Note that X is a binomially distributed random variable with expectation 

2IA'-RI <  IAI. E X =  -~ _ 

Furthermore, the random variable s(X, A) is the sum of Ixl zero-one independent 
random variables {Id: (b', b") E X}, where for each (b', b") E X ,  

so that 

Prob{Id = 1} = (2/5) 2-1W'b''In(A" R)l, 

Es(X ,A)  >_ ~--~IXI . 

Hence, Lemma 5 implies that 

Prob{s(Z,  A) _< IXl/10} _< exp(-IA[/50 ) + exp(- IX] /100  ) 

m o  - n / 2 ' l  
_< 2exp(- iXI/100 ) < 2exp( }" 
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Thus, as in the Case 2, since [R - R[ > n/2 - 3.10-17n, one obtains 

wk't < E 2n-IR-RI2exp 
k-t -- 106 } 

(Lk/2j) m_> o 
< nn~/72'~/2+4"lo-~n+%xp(_lO-16n) 

= O(2n/2-1°-~n). 

In order to estimate the number ~ , ~  of pairs (Z, A \ ( RUZ) )  such that IAI = k, 

[R I = g and s(Z, A) > 121/10, we remark that in this case 

Hence 

t(RU Z) - (RU Z)I -> I R -  RI + IX[I--O - > -2n + 10 l ~ ' n  

tb~',_~ < E ( g ) ( n / 2 + 3 " 1 0 - 1 7 n ] "  ( n / 2 - ( 2 m - n ) / 3 . 1 0 7 - [ k / 2 J )  
k-t  -- [k/2] ] k -  g -  [k/2J " (L m) m_>mo 

~ l l  

Thus, arguing as in Case 2, one can bound ~ from above by 

~/2+3.io-,~n n/2- n/10  i5 ~k-t-Lk/2J 
n'~6/z n~>_~o2 ( n~-+ ~_ l-dZ-iTn ] 

< nn6/72 '~/2+4"1°-1~n(1 - l__~]0.1n 
- -  1015/ 
<_ n,6/72,~/2+4"lO-~n2 -lo-15n = O(2n/2-10-1%). 

Consequently, as in the previous case, one can bound the number of sum-free 
subsets A of G with IX[ > (m - n/2)/lO 6 by 

~k ~ (vtk'g -{- (v'kt'g O(n2(2n/2-10-tTn ÷ 2n/2-10-16n)) = o(2n/2-10-~Sn)" 
-i-k-Z-g-; -- 
([km) 

This completes the proof of the Main Lemma. 

[A91] 

[B98] 
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