SUM-FREE SETS IN ABELIAN GROUPS

BY

VSEVOLOD F. LEV*

Institute of Mathematics, The Hebrew University of Jerusalem Givat Ram, Jerusalem 91904, Israel e-mail: seva@math.huji.ac.il

AND

TOMASZ LUCZAK**

Department of Mathematics, Adam Mickiewicz University Poznad, Poland e-mail: tomasz@amu.edu.pl

AND

TOMASZ SCHOEN

Department o/ Mathematics, Christian Albrecht University Kiel, Germany and Department of Discrete Mathematics, Adam Mickiewicz University Poznad, Poland e-mail: tos@numerik.uni-kiel.de

ABSTRACT

We show that there is an absolute constant $\delta > 0$ such that the number of sum-free subsets of any finite abelian group G is

 $\Bigl(2^{\nu(G)}-1\Bigr)\,2^{|G|/2}+O\Bigl(2^{(1/2-\delta)|G|}\Bigr),$

where $\nu(G)$ is the number of even order components in the canonical decomposition of G into a direct sum of its cyclic subgroups, and the implicit constant in the O-sign is absolute.

Received March 13, 2000 and in revised form September 28, 2000

^{*} This author was partially supported by the Edmund Landau Center for Research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany).

^{**} This author was partially supported by KBN grant 2 P03A 021 17.

1. Introduction

A subset $A \subseteq G$ of an (additively written) group G is said to be sum-free if no $a_1, a_2, a_3 \in A$ satisfy the equation $a_1 + a_2 = a_3$. In [A91], Alon proved that the number of sum-free subsets of any group G of cardinality $n = |G|$ is at most $2^{(1/2+o(1))n}$ (as $n \to \infty$) and asked about the sharp form of this result. In the present paper we answer Alon's question for G abelian.

THEOREM 1: There is an absolute constant $\delta > 0$ such that the number of *sum-free subsets of any abelian group G of cardinality* $n = |G|$ *is*

$$
(2^{\nu(G)}-1)2^{n/2}+O(2^{(1/2-\delta)n}),
$$

where $\nu(G)$ is the number of even order components in the canonical decompo*sition of G into a direct* sum *of its cyclic subgroups, and the implicit constant in the O-sign is absolute.*

Throughout the rest of the paper, G is a finite abelian group of cardinality n ; whenever appropriate, we tacitly assume n to be sufficiently large. We write $S\Gamma[G]$ for the set of all sum-free subsets of G. Let $H \subseteq G$ be a subgroup, and let $\overline{A} \in \text{SF}[G/H]$. Suppose that a subset $A \subseteq G$ satisfies $\varphi_H(A) = \overline{A}$, where $\varphi_H: G \to G/H$ is the canonical homomorphism. Then plainly $A \in \mathcal{SF}[G]$, and we say that A is induced by \overline{A} . For $H = G$, no non-empty sum-free subset of G is induced by a sum-free subset of G/H . If $[G:H] = 2$ (that is, H is an index two subgroup of G), then the sum-free subsets of G induced by a sum-free subset of G/H are all sets $A \subseteq G \setminus H$; it will be seen that it is these sets that contribute the main term to the asymptotic formula of Theorem 1. On the other hand, let $SF^*[G]$ be the family of all $A \in SF[G]$ *not* induced by any $\overline{A} \in SF[G/H]$, where H is an index two subgroup. We prove that this set is small; more precisely, we have

MAIN LEMMA: There is an absolute constant $\delta > 0$ such that

$$
|SF^*[G]| = O(2^{(1/2-\delta)n}),
$$

where the implicit constant in the O-sign is absolute.

In particular, the number of all "primitive" sum-free subsets of G (not induced by any $\overline{A} \in \mathcal{S}F[G/H]$ for a non-zero subgroup H) is $O(2^{(1/2-\delta)n})$. A result due to two of the present authors ($[LS, Theorem 1]$) shows that for p prime, $|\text{SF}[\mathbb{Z}_p]| \gg 2^{p/3} p$; therefore, $1/2 - \delta$ in the exponent cannot be replaced by 1/3.

Theorem 1 will be deduced from the Main Lemma in Section 2, and the Main Lemma will be proved in Sections 3-7.

We now make several historical comments.

The first to consider sum-free sets was probably Schur with his celebrated theorem which states that it is impossible to partition the interval $[1,n]$ into a fixed number of sum-free subsets, provided that n is large enough compared to the number of subsets. In [CE90], Cameron and Erdős investigated some properties of sum-free subsets of $[1, n]$ and conjectured that the number of such subsets is $O(2^{n/2})$. (The motivation for this conjecture is that the vast majority of sum-free sets $A \subseteq [1, n]$ are actually believed to be subsets of either the set $\{1, 3, ..., 2|(n-1)/2| + 1\}$, or the set $[(n+1)/2], n]$.) Having attracted much attention, the conjecture of Cameron and Erdős is, nevertheless, still open. One can expect that the problem gets easier if the condition $a_1 + a_2 \neq a_3$ $(a_i \in [1, n])$ is replaced by the stronger and more restrictive condition $a_1 + a_2 \not\equiv a_3 \pmod{n}$; that is, if sum-free subsets of [1, n] are replaced by sum-free subsets of \mathbb{Z}_n . Indeed, Theorem 1 implies at once that $|SF[\mathbb{Z}_n]| = O(2^{n/2})$, which can be viewed as a weak form of the conjecture.

For a survey of other results concerning sum-free sets and their generalizations we refer the reader to [B98, LS]. The rest of the paper is devoted to the proofs of Theorem 1 and the Main Lemma.

2. Deduction of Theorem 1 from the Main Lemma

LEMMA 1: The number of subgroups of G is at most $2^{(\log_2 n)^2}$.

Proof: Plainly, any subgroup of G can be generated by at most $\lfloor \log_2 n \rfloor$ elements. If we do not require the elements to be distinct, then *exactly* $\lfloor \log_2 n \rfloor$ generators can be used. Thus, the number of subgroups does not exceed the number of ways to choose $\lfloor \log_2 n \rfloor$ elements of G, which is at most

$$
n^{\lfloor \log_2 n \rfloor} < 2^{\left(\log_2 n \right)^2}.
$$

LEMMA 2: The number of index two subgroups of G is $2^{\nu(G)} - 1$, where $\nu(G)$ is *the number of even order components in the canonical decomposition of G into a direct sum of its cyclic subgroups.*

Proof: Let $N(G)$ be the sought number of index two subgroups, so that for instance, $N(G) = 0$ if G is cyclic of odd order and $N(G) = 1$ if G is cyclic of even order. It suffices to prove that $N(G_1 \oplus G_2) + 1 = (N(G_1) + 1)(N(G_2) + 1)$

for any two finite abelian groups G_1 and G_2 . For this, notice that if H_1 and H_2 are index two subgroups of G_1 and G_2 , respectively, then each of

$$
H_1 \oplus G_2, G_1 \oplus H_2, \text{ and } (H_1 \oplus H_2) \cup ((G_1 \setminus H_1) \oplus (G_2 \setminus H_2))
$$

is, evidently, an index two subgroup of $G_1 \oplus G_2$. The number of all these subgroups is $N(G_1) + N(G_2) + N(G_1)N(G_2)$, and we leave it to the reader to verify that any index two subgroup of $G_1 \oplus G_2$ has this form.

By the Main Lemma, to prove Theorem 1 we only need to count all sum-free $A \subseteq G$ induced by some $\overline{A} \in \mathcal{S}F[G/H]$, where H is an index two subgroup. For H fixed, such A are those subsets of G contained in the complement of H , and their number is $2^{n/2}$. Furthermore, if H_1 and H_2 are distinct index two subgroups and A is contained in both complements $G \setminus H_i$, then $A \subseteq G \setminus (H_1 \cup H_2)$; for H_1 and H_2 fixed, the number of such A is at most $2^{n/4}$. Now by the inclusion-exclusion argument and Lemmas 1 and 2, the number of A in question is

$$
\sum_{\substack{H \subseteq G \\ [G:H]=2}} 2^{n/2} - O\bigg(\sum_{\substack{H_1, H_2 \subseteq G \\ [G:H_1]=2}} 2^{n/4}\bigg) = (2^{\nu(G)} - 1)2^{n/2} - O(2^{n/4 + 2(\log_2 n)^2}).
$$

Theorem 1 follows.

3. Auxiliary results

We collect here some facts that will be used in the proof of the Main Lemma.

Let A be a subset of G. The **period**, or **stabilizer** of A is the subgroup of G defined by

$$
H(A) := \{ g \in G : A + g = A \}.
$$

In other words, $H(A)$ is the maximal subgroup of G such that A is a union of $H(A)$ -cosets. The following theorem is essentially due to Kneser [Kn53, Kn55]; the version presented below can be found, for instance, in [Ke60, Theorem 3.1]. (In fact, it can be derived easily from Kneser's original result.)

THEOREM 2: *Let A and B be finite, non-empty subsets of an abelian group G. Suppose that* $|A + B| \leq |A| + |B| - 1$. Then

$$
|A + B| = |A + H| + |B + H| - |H|,
$$

where $H = H(A + B)$.

LEMMA 3: Let $B \subseteq G$ be a finite, non-empty subset of G, not contained in a *2coset of a proper subgroup. Suppose, moreover, that* $|B| \leq \frac{2}{3}|G|$. Then there *exists an element* $b \in B$ *such that* $|(B + b) \cap B| \leq \frac{5}{6}|B|$ *.*

Proof: For $g \in G$, define $f_B(g) := |(B + g) \setminus B| = |B| - |(B + g) \cap B|$. This function is often referred to as the function of Erdős-Heilbronn-Olson; its basic properties include

$$
(1) \t\t f_B(-g) = f_B(g),
$$

(2)
$$
f_B(g_1 + g_2) \le f_B(g_1) + f_B(g_2),
$$

and

(3)
$$
\sum_{g \in B-B} f_B(g) = |B||B - B| - |B|^2.
$$

(All this is easy to verify.) By averaging, we derive from (3) that there exist $b_1, b_2 \in B$ such that

$$
f_B(b_1-b_2)\geq |B|\left(1-\frac{|B|}{|B-B|}\right),
$$

and since $f_B(b_1 - b_2) \le f_B(b_1) + f_B(b_2)$ by (1) and (2), we have

$$
f_B(b) \geq \frac{1}{2} |B| \left(1 - \frac{|B|}{|B-B|} \right)
$$

either for $b = b_1$ or for $b = b_2$. Now

$$
|(B+b)\cap B|=|B|-f_B(b)\leq \frac{1}{2}|B|\left(1+\frac{|B|}{|B-B|}\right),
$$

and it remains to observe that $|B - B| \geq \frac{3}{2}|B|$ by Theorem 2: otherwise, letting $H := H(B - B)$, we get

$$
\frac{3}{2}|B+H| \ge \frac{3}{2}|B| > |B-B| = 2|B+H| - |H|,
$$

$$
|B+H| < 2|H|,
$$

whence $|B + H| = |H|$ and B is contained in a coset of H. Thus $H = G$ or equivalently $B - B = G$, and therefore $\frac{3}{2}|B| > |G|$, a contradiction.

LEMMA 4: For any positive integer y and real $x \ge y - 1$ we have

$$
\binom{x}{y} < \left(\frac{x}{y}e\right)^y.
$$

Proof: Using induction by y (or by a quantitative version of the Stirling formula) one obtains $y! > (y/e)^y$, hence

$$
\binom{x}{y} \le \frac{x^y}{y!} < \left(\frac{x}{y}e\right)^y. \qquad \blacksquare
$$

We will need an estimate for the tails of binomial and hypergeometric distributions. Recall that X is distributed binomially with parameters k and p if it attains values from the interval $[0, k]$ with probabilities $\text{Prob}\{X = i\} = {k \choose i} p^{i}(1-p)^{k-i}$, and in this case its expectation is $EX = kp$. Furthermore, X has a hypergeometric distribution with parameters N, k , and m , if it attains values from the interval $[0, N]$ with probabilities $Prob\{X = i\} = {k \choose i} {m \choose N-i} / {k+m \choose N}$; the expectation of such a random variable is $E X = m k/N$.

LEMMA 5 ([JLR00, Theorems 2.1 and 2.10]): *Suppose that X has either a binomial or a hypergeometric distribution. Then for any* $0 \le \varepsilon \le 1$ we have

$$
\mathrm{Prob}\{X \leq (1-\varepsilon)\mathrm{E} X\} \leq \exp\Bigl(-\frac{\varepsilon^2}{2}\,\mathrm{E} X\Bigr),
$$

and

$$
\mathrm{Prob}\{X \ge (1+\varepsilon)\mathrm{E}X\} \le \exp\left(-\frac{\varepsilon^2}{3}\mathrm{E}X\right).
$$

4. Popular differences

We continue our preparations for the proof of the Main Lemma. Kneser's theorem shows that, "normally", the sumset $A+B$ contains at least $|A|+|B|-1$ elements. In this section we consider the case $B = -A$ so that $A + B$ becomes the difference set $A - A$ and show that, "normally", this set contains at least $2|A|(1 - o(1))$ elements with large number of representations as a difference of two elements of A.

For a subset $A \subseteq G$ of any (not necessarily finite) abelian group G and a non-negative integer K, we denote by $D_K(A)$ the set of all those elements $g \in G$ which have at least K distinct representations as $g = a_1 - a_2$ (with $a_1, a_2 \in A$).

PROPOSITION 1: Let $A \subseteq G, K \in \mathbb{Z}^+$, and $D_K(A)$ be as above. Suppose that

$$
|D_K(A)| \leq 2|A| - 5\sqrt{K|A-A|}.
$$

Then there is a subset $A' \subseteq A$ *such that*

$$
|A \setminus A'| \leq \sqrt{K|A-A|} \quad \text{and} \quad A'-A' \subseteq D_K(A).
$$

The proof of Proposition 1 relies upon the following graph-theoretic lemma.

LEMMA 6: For any graph $\Gamma = (V, E)$ of average degree $\bar{d} \geq (1 - \lambda)|V|$, there *exists an induced subgraph* $\Gamma' = (V', E')$ *such that*

- (i) $|V'| > (1 \sqrt{\lambda})|V|$;
- (ii) $\delta(\Gamma') > (1 2\sqrt{\lambda})|V|$ *(where* $\delta(\Gamma')$ is the minimal degree of Γ').

Proof: We define Γ' to be the subgraph of Γ , induced by all vertices $v \in V$ of degree $d(v) > (1 - \sqrt{\lambda})|V|$. We have

$$
\bar{d}|V| = \sum_{d(v) \le (1-\sqrt{\lambda})|V|} d(v) + \sum_{d(v) > (1-\sqrt{\lambda})|V|} d(v)
$$

\n
$$
\le (1-\sqrt{\lambda})|V|(|V|-|V'|) + |V||V'|,
$$

\n
$$
(1-\lambda)|V| \le (1-\sqrt{\lambda})(|V|-|V'|) + |V'|
$$

\n
$$
= (1-\sqrt{\lambda})|V| + \sqrt{\lambda}|V'|,
$$

\n
$$
|V'| \ge (1-\sqrt{\lambda})|V|,
$$

which proves the first assertion. To prove the second assertion, notice that the degree in Γ' of any vertex $v' \in V'$ is greater than

$$
(1 - \sqrt{\lambda})|V| - (|V| - |V'|) = |V'| - \sqrt{\lambda}|V| \ge (1 - 2\sqrt{\lambda})|V|. \qquad \blacksquare
$$

Proof of Proposition 1: We can assume that $K \leq |A|$, as otherwise $\sqrt{K|A-A|}$ $> |A|$ and the assertion is trivial.

Consider the graph $\Gamma = (A, E)$ on the system of vertices A, where $(a_1, a_2) \in E$ if and only if $a_1 - a_2 \in D_K(A)$. The edges of the complement of Γ correspond to elements $c \in (A - A) \setminus D_K(A)$. Any such element yields at most $K - 1$ edges, and elements c and $-c$ yield the same edge. Therefore, the number of edges of the complement is at most

$$
\frac{1}{2}(K-1)|(A-A)\setminus D_K(A)|\leq \frac{1}{2}(K-1)|A-A|,
$$

the number of edges of Γ is at least

$$
\binom{|A|}{2}-\frac{1}{2}\left(K-1\right)|A-A|,
$$

the average degree of Γ is at least

$$
|A|-1-(K-1)|A-A|/|A|\geq |A|-K|A-A|/|A|=|A|(1-K|A-A|/|A|^2),
$$

and by Lemma 6 there is a subgraph $\Gamma' = (A', E')$ such that

$$
|A'| \ge |A|(1 - \sqrt{K|A - A|/|A|^2}) = |A| - \sqrt{K|A - A|},
$$

and for any $a' \in A'$ the neighborhood $N(a')$ of a' in Γ' is "large":

$$
|N(a')|>|A|-2\sqrt{K|A-A|}.
$$

Assume that $A' - A' \nsubseteq D_K(A)$ (otherwise we are done). Then there exist two elements a'_1 and a'_2 of A' such that $a'_2 - a'_1 \notin D_K(A)$, and hence the number of representations of $a'_2 - a'_1$ as a difference of two elements of A does not exceed $K-1$. It follows that

$$
|(a'_1-N(a'_1))\cap (a'_2-N(a'_2))|\leq K-1,
$$

and since $a'_j - N(a'_j) \subseteq D_K(A)$ $(j = 1, 2)$, we conclude that

$$
|D_K(A)| \ge |N(a'_1)| + |N(a'_2)| - (K - 1)
$$

> 2|A| - 4\sqrt{K|A - A|} - K > 2|A| - 5\sqrt{K|A - A|}.

Why are we interested in the elements of $A - A$ with a large number of representations? Suppose that any $A \in \mathrm{SF}[G]$ contains a "small" subset R, such that its difference set $R - R$ is "large". Since the number of possible sets R is small (as $|R|$ is small), and since the number of sets A corresponding to a given R is small also (as $A \subseteq G \setminus (A - A) \subseteq G \setminus (R - R)$), this would help us to bound the total number of A possible. Indeed, it is easy to show that there exists a "small" R such that $R - R$ contains the set $D_K(A)$ with a suitably chosen K.

LEMMA 7: For any $A \subseteq G$, any $p \in (0,1)$, and any integer $K \geq 0$ such that $p^2K \geq 6 \ln n$, there exists a subset $R \subseteq A$ with the following properties:

- (i) $|R| \leq 2p|A|$;
- (ii) $D_K(A) \subseteq R R$.

Proof: Let $R \subseteq A$ be a random subset of A for which the elements of A are chosen randomly and independently with probability p each. Plainly, the expected cardinality of R is $p|A|$, and by Markov's inequality, (i) holds with probability at least 1/2.

Fix $d \in D_K(A)$. For any representation $d = a_1 - a_2$ $(a_1, a_2 \in A)$ there are at most two other representations of d of this form in which a_1 or a_2 are used (there can be one representation $d = a_3 - a_1$ and one $d = a_2 - a_4$). As the total number of representations is at least K , we can select at least $K/3$ representations disjoint in the sense that no $a \in A$ is used in two distinct representations. The probability that a given representation "survives" in R is p^2 , the probability that it is destroyed is $1 - p^2$, the probability that *all* selected representations are destroyed is less then or equal to $(1-p^2)^{K/3}$; thus,

$$
Prob{d \notin R - R} \le (1 - p^2)^{K/3} < e^{-p^2 K/3} \le 1/n^2,
$$

whence

$$
Prob\{D_K(A) \nsubseteq R - R\} \leq \sum_{d \in D_K(A)} Prob\{d \notin R - R\} \leq 1/n.
$$

Therefore, (ii) holds with probability at least $1 - 1/n > 1/2$, and the result follows.

Below we choose $K = \lfloor n^{2/3} \rfloor$, $p = n^{-1/7}/2$, and think of R as being associated with A uniquely; in other words, for each A we select and fix one particular set R of all those, the existence of which is guaranteed by Lemma 7. We abbreviate $D_K(A)$ by D; thus, we have

$$
(4) \t\t\t |R| < n^{6/7}, \t D \subseteq R - R.
$$

5. Proof of the Main Lemma, I. Small sum-free sets

To prove the Main Lemma we split the family of all sum-free subsets of G into several sub-families and show that each of them contains not more than $2^{(1/2-\delta)n}$ sets for some constant $\delta > 0$. In this section we estimate the number of sumfree subsets of cardinality less than $(1 - \varepsilon)n/4$, where ε is a positive constant. We follow closely Alon's argument from [A91] and use some of his intermediate results.

Recall that a graph Γ is r-regular if each vertex of Γ has degree r, and that a subset $A \subseteq V(\Gamma)$ is **independent** if it induces an empty subgraph of Γ .

LEMMA 8: Let $\varepsilon > 0$ be fixed. Assuming r to be large enough, for any r-regular *graph* Γ *on n vertices the number of independent sets of at most* $(1 - \varepsilon)n/4$ *vertices of* Γ *is smaller than* $2^{n/2-\epsilon^2 n/6}$.

Proof'. Alon [A91, Corollary 3.2] showed that there is a spanning bipartite subgraph $\Gamma' \subseteq \Gamma$ such that the degree of any vertex of Γ' is between $r/2 - r^{5/8}/2$ and $r/2 + r^{5/8}/2$. Let E be the edge set, and let U and V be the partite sets of Γ' , labeled so that $|U| \leq |V|$. Then evidently

$$
|V|(r/2 - r^{5/8}/2) \le |E| \le |U|(r/2 + r^{5/8}/2),
$$

$$
|V|(r - r^{5/8}) \le (n - |V|)(r + r^{5/8}),
$$

whence

$$
|V| \le m := \lfloor n(1 + r^{-3/8})/2 \rfloor.
$$

Let $I(s,t)$ denote the number of all t element subsets of U which have exactly s neighbors in V. By [A91, Corollary 2.5], there exists an absolute constant C such that for every $t \geq 2m/\sqrt{r}$ we have

$$
I(s,t) \leq {s + Cmr^{-1/7} \choose t}.
$$

On the one hand, the number of independent sets A with at most $\ell := \lfloor (1-\varepsilon)n/4 \rfloor$ elements satisfying $t := |A \cap U| < |2m/\sqrt{r}|$ is bounded from above by

$$
\sum_{0\leq t<\lceil 2m/\sqrt{r}\rceil}\binom{m}{t}\binom{m}{\ell}
$$

On the other hand, the number of independent sets A of cardinality $i := |A| \leq \ell$ with $t := |A \cap U| \geq 2m/\sqrt{r}$ does not exceed

$$
\sum_{i=\lceil 2m/\sqrt{r} \rceil}^{\ell} \sum_{t=\lceil 2m/\sqrt{r} \rceil}^{i} \sum_{s=0}^{|V|+t-i} I(s,t) \binom{|V|-s}{i-t}
$$
\n
$$
\leq \sum_{i=\lceil 2m/\sqrt{r} \rceil}^{\ell} \sum_{t=\lceil 2m/\sqrt{r} \rceil}^{i} \sum_{s=0}^{|V|+t-i} {s+Cmr^{-1/7} \choose t} \binom{|V|-s}{i-t}
$$
\n
$$
\leq \sum_{i=\lceil 2m/\sqrt{r} \rceil}^{\ell} \sum_{t=\lceil 2m/\sqrt{r} \rceil}^{i} \sum_{s=0}^{|V|+t-i} \binom{|V|+Cmr^{-1/7}}{i}
$$
\n
$$
\leq n^3 {m + Cmr^{-1/7} \choose \ell}
$$
\n
$$
\leq n^3 e^{C\ell r^{-1/7}} {m \choose \ell}.
$$

Thus, the total number of independent sets with at most ℓ vertices is bounded

from above by

$$
nr^{2m/\sqrt{r}}\binom{m}{\ell} + n^3 e^{Clr^{-1/7}}\binom{m}{\ell} \leq n^3 2^{Cnr^{-1/7}}\binom{m}{\ell}
$$

$$
\leq n^3 2^{Cnr^{-1/7}} + m \sum_{i=0}^{\ell} \binom{m}{i} 2^{-m}.
$$

The latter sum is the probability that a random variable, distributed binomially with parameters m and 1/2, attains value not larger than $\ell \leq (1 - \varepsilon)n/4 \leq$ $(1 - \varepsilon)m/2$; by Lemma 5, this sum does not exceed $e^{-0.25\varepsilon^2 m}$, and it remains to observe that

$$
n^3 2^{Cnr^{-1/7} + m} e^{-0.25\epsilon^2 m} \le 2^{n/2 - \epsilon^2 n/8 \ln 2 + 2Cnr^{-1/7}} \le 2^{n/2 - \epsilon^2 n/6}.
$$

LEMMA 9: Let $\varepsilon > 0$ be fixed. Assuming *n* to be large enough, we have

$$
\#\{A \in \mathbb{S}\mathbb{F}[G] : |A| \le (1 - \varepsilon)n/4\} = O(2^{(1/2 - \varepsilon^2/7)n})
$$

(where the implicit constant in the O-sign depends on ε only).

Proof: Let $r = |\log n|$. Given a sum-free set $A \subseteq G$ of cardinality $r \le |A| \le$ $(1 - \varepsilon)n/4$, select an *r*-element subset $B \subseteq A$ and define $r_0 := |B \cup (-B)|$, so that $r \le r_0 \le 2r$. Consider the graph on the vertex set G, in which two vertices u and v are adjacent if and only if $u - v \in \pm B$. This graph is (r_0) -regular, and each $A \in \text{SF}[G]$ containing B is its independent set. (Otherwise, we would have $a' - a'' \in B \subseteq A$ for some $a', a'' \in A$.) Thus, by Lemma 8 the number of $A \in \mathrm{SF}[G]$ with at most $(1 - \varepsilon)n/4$ elements does not exceed

$$
\sum_{i=0}^{r-1} \binom{n}{i} + \binom{n}{r} 2^{(1/2 - \varepsilon^2/6)n} = O_{\varepsilon}(2^{(1/2 - \varepsilon^2/7)n}). \qquad \blacksquare
$$

It is worth pointing out that our Lemma 9 is "parallel" to a result of Bilu [B98, Theorem 1.1], where a similar estimate for the number of sum-free subsets of the interval $[1, n]$ is established. Bilu's result implies at once the desired estimate for the group \mathbb{Z}_n ; however, his approach, based on Szemerédi's theorem, is not applicable for a generic abelian group G.

6. Proof of the Main Lemma, II. Small (popular) difference sets

First, we estimate the number of $A \in \mathrm{SF}^*[G]$ for which D is "small".

LEMMA 10: The number of $A \in \mathbb{SF}^*[G]$ *satisfying*

$$
|D|\leq 2|A|-5n^{5/6}
$$

is $O(2^{0.46n})$.

Proof: As $2|A| - 5n^{5/6} \leq 2|A| - 5\sqrt{K|A-A|}$, by Proposition 1 for any A under consideration there exists $A' \subseteq A$ such that

(5)
$$
|A'| \ge |A| - \sqrt{K|A-A|} \ge |A| - n^{5/6}, \quad A' - A' \subseteq D
$$

and then

$$
|A'-A'| \leq |D| \leq 2|A| - 5n^{5/6} \leq 2|A'| - 3n^{5/6}.
$$

Thus, letting $H := H(A' - A')$, by Theorem 2 we get $|A' - A'| = 2|A' + H| - |H|$, whence

$$
2(|A' + H| - |A'|) \leq |H| - 3n^{5/6}
$$

and we conclude that

(6)
$$
|H| \ge 3n^{5/6}
$$
 and $|A' + H| - |A'| < |H|/2$.

We now observe that $[G : H] \neq 1$, since otherwise $A' - A' = G$ (contradicting the fact that *A'* is sum-free), and similarly $[G : H] \neq 2$, since otherwise $A' - A' = H$, $A \subseteq G \setminus (A' - A') = G \setminus H$ and A is contained in the complement of an index two subgroup. Therefore, we have

$$
(7) \t\t |H| \leq n/3.
$$

Furthermore, we note that

$$
(8) \t\t\t |A' + H| \le n/2
$$

(else for any $g \in G$ by the pigeonhole principle holds $(A'+H) \cap (g+(A'+H)) \neq \emptyset$, hence $g \in (A'+H)-(A'+H)$ implying that $A'-A'=(A'+H)-(A'+H)=G$, and that by (6) and (7)

(9)
$$
|A' + H| - |A'| < n/6.
$$

We now make the counting. To each A there correspond a set A' and a subgroup H. The number of subgroups H possible is, by Lemma 1, less than $2^{(\log_2 n)^2}$, and for any H given the number of sets $A' + H$ possible is at most $2^{n/|H|}$; thus, by (6) the number of choices for $A' + H$ is at most $2^{(\log_2 n)^2} 2^{(n^{1/6}/3)} = 2^{o(n)}$. Next, by (8) and (9) for any $A' + H$ given, the number of sets A' possible is at most

$$
\sum_{0 \le i < n/6} \binom{n/2}{i} = O(2^{0.4592n}).
$$

Finally, by (5) for any A' there are at most

$$
\sum_{0 \le i \le n^{5/6}} \binom{n}{i} = 2^{o(n)}
$$

corresponding sets A. Putting everything together, we see that the total number of A is at most

$$
2^{0.4592n + o(n)} = O(2^{0.46n}).
$$

Having established Lemma 10, we can concentrate on sets A such that

(10)
$$
|D| > 2|A| - 5n^{5/6}.
$$

Moreover, by Lemma 9 we can restrict ourselves to studying the sets A of cardinality

(11)
$$
|A| > n/4 - 10^{-8}n.
$$

In our next lemma we count A which, in addition to these two properties, have "small" difference set.

LEMMA 11: The number of $A \in \mathbb{SF}^* [G]$ *satisfying (10), (11), and*

$$
|A - A| \le n/2 + 10^{-7}n
$$

is $O(2^{0.42n})$.

Proof: Consider the set $R \subseteq A$ with properties (4). By (10), (11) and the assumptions of the lemma we have

$$
|R - R| \ge |D| > 2|A| - 5n^{5/6} > n/2 - 3 \cdot 10^{-8} n \ge |A - A| - 2 \cdot 10^{-7} n,
$$

hence one can add to R at most $4 \cdot 10^{-7}n$ elements of A to obtain a set $A'' \subseteq A$ of cardinality $|A''| \leq |R| + 4 \cdot 10^{-7} n \leq 5 \cdot 10^{-7} n$ such that $A'' - A'' = A - A$. Clearly, such an A" can be chosen from G at no more than $n\binom{n}{15\cdot 10^{-7}n}$ ways.

We put $B := A'' - A'' = A - A$ and note that $A \subseteq a - B$ for every $a \in A$.

If B is contained in a coset of a subgroup $H \subset G$, then so is A, and in this case $k := [G : H] \geq 3$: otherwise, A and $A - A$ are disjoint subsets of H, whence

$$
\frac{1}{2}n = |H| \ge |A - A| + |A| \ge |D| + |A| > 3|A| + o(n) > \frac{3}{4}n - 4 \cdot 10^{-8}n,
$$

a contradiction. For H given, the number of A contained in an H -coset is at most $k2^{|H|} = k2^{n/k} < n2^{n/3}$, hence by Lemma 1 the total number of $A \in \text{SF}^*[G]$ for which B is contained in a coset of a proper subgroup is $O(2^{0.34n})$.

Suppose now that B is *not* contained in a coset of a proper subgroup. Applying then Lemma 3 to the set B, we find an element $b = a_1 - a_2$ $(a_1, a_2 \in A)$ with the property that

$$
|(a_1-B)\cap (a_2-B)|=|(-B)\cap (-(a_1-a_2)-B)|=|B\cap (b+B)|\leq \frac{5}{6}|B|.
$$

Notice that $B \supseteq a_i - A$, whence $A \subseteq a_i - B$ for $i = 1,2$. Thus, once a_1, a_2 , and A'' are selected, the remaining elements of A are to be chosen from the set $(a_1 - B) \cap (a_2 - B)$ of cardinality at most $\frac{5}{6}(n/2 + 10^{-7}n)$. Consequently, the number of possible sets A satisfying the assumptions of the lemma is at most

$$
n^3 \binom{n}{\lfloor 5 \cdot 10^{-7} n \rfloor} 2^{\frac{5}{5}(1/2 + 10^{-7})n} = O(2^{0.42n}).
$$

7. Proof of the Main Lemma~ III. Conclusion

We now take care of the remaining and most complicated case, that of $A, A - A$, and D all "large". More precisely, by Lemmas 9, 10, and 11, to conclude the proof of the Main Lemma it suffices to count $A \in \mathrm{SF}[G]$ such that (10), (11), and

$$
(12) \t\t\t |A-A| > n/2 + 10^{-7}n
$$

hold.

Since the proof is somewhat technical, we first describe briefly its main idea. To construct A we first choose the small subset $R \subseteq A$. The remaining elements of A must then be selected from the set $G \setminus (R - R)$, the cardinality of which is $n - |R - R| \le n - |D| < n/2 + 3 \cdot 10^{-8}n$ (only slightly exceeding $n/2$ in the worst case). We select $A \setminus R$ in two rounds, first choosing a set $Z \subseteq A$ of $||A||/2$ elements, and then finding $A \setminus (R \cup Z)$. If Z is chosen "at random", then each element $d \in A - A$ with probability at least 1/4 belongs to $Z - Z$. Hence, we can expect that

$$
|(Z - Z) \setminus (R - R)| \ge \frac{1}{4} |(A - A) \setminus (R - R)|
$$

= $\frac{1}{4} |A - A| - \frac{1}{4} |R - R|$,

$$
|(R \cup Z) - (R \cup Z)| \ge |(Z - Z) \cup (R - R)|
$$

$$
\ge \frac{3}{4} |R - R| + \frac{1}{4} |A - A|
$$

$$
\ge \frac{3}{4} |D| + \frac{1}{4} (n/2 + 10^{-7} n)
$$

$$
\ge \frac{3}{2} |A| + \frac{1}{8} n + \frac{1}{4} 10^{-7} n - 4 n^{5/6}
$$

$$
\ge \frac{1}{2} n + \left(\frac{1}{4} 10^{-7} - \frac{3}{2} 10^{-8}\right) n - 4 n^{5/6}
$$

$$
> \frac{1}{2} n + \delta n
$$

(with some $\delta > 0$). As $A \subseteq G \setminus ((R \cup Z) - (R \cup Z))$, we expect that after choosing Z, the set $A \setminus (R \cup Z)$ is to be chosen from at most $n - |(Z \cup R) - (Z \cup R)| < n/2 - \delta n$ elements of G; hence, the number of choices for $A \setminus (R \cup Z)$ is bounded from above by $2^{n/2-\delta n}$. This is small enough to compensate for the choices of R and Z. Unfortunately, a fair amount of work is needed to make the above argument rigorous. The main difficulty is that if $d_1, d_2 \in A - A$ and Z is a random subset of $A\setminus R$, then the events that $d_i \in (Z\cup R)-(Z\cup R)$ for $i = 1,2$ are not independent. Hence our main task will be, roughly speaking, to approximate $|(Z \cup R) - (Z \cup R)|$ by a sum of independent random variables.

For A (and therefore, $R = R(A)$) given, let $X = X(A)$ be a set of pairs (b'_{i}, b''_{i}) $(b'_{i}, b''_{i} \in A)$ which satisfies the following conditions and is maximal subject to these conditions:

(i) all differences $b'_i - b''_i$ are pairwise distinct and do not belong to $R - R$;

(ii) $\{b'_i, b''_i\} \cap \{b'_j, b''_j\} \subseteq R$ (for any $i \neq j$).

We put $X^b = \bigcup_i \{b'_i, b''_i\}$ so that by the maximality of X, for any $d \in A-A$ there is a representation $d = a' - a''$ such that either $a' \in R \cup X^b$, or $a'' \in R \cup X^b$. (To see this, consider separately the cases $d \in R - R$; $d = b'_i - b''_i$ for some *i*; and $d \notin R - R, d \neq b'_{i} - b''_{i}$.)

Next, we introduce yet another set of pairs associated with A: specifically, let $Y = Y(A)$ be a set of pairs (c'_i, c''_i) $(c'_i \in R \cup X^b, c''_i \in A \setminus (R \cup X^b))$ which satisfies and is maximal subject to the following conditions:

(i) all differences $c_i' - c_i''$ are pairwise distinct and do not belong to $(R \cup X^b)$ – $(R \cup X^b);$

(ii) $c''_i \neq c''_i$ (for any $i \neq j$). We put $Y^c = \bigcup_i \{c_i''\}$ and note that $R \cup X^b \cup Y^c \subseteq A$, and moreover,

(13)
$$
(R \cup X^{b} \cup Y^{c}) - (R \cup X^{b} \cup Y^{c}) = A - A.
$$

(To verify, assume that $d \in (A-A) \setminus ((R \cup X^b) - (R \cup X^b))$ and write $d = a' - a''$, where exactly one of a', a'' belongs to $R \cup X^b$. Now if $d = \pm (c'_i - c''_i)$ for some i, then $d \in \pm((R \cup X^b) - Y^c)$; otherwise (a', a'') , $(a'', a') \notin Y$ and the maximality of Y shows that of the elements a' and a'' one which *does not* belong to $R \cup X^b$, belongs to Y^c — whence, again, $d \in \pm ((R \cup X^b) - Y^c)$.)

We split the proof into three cases, depending on the cardinalities of X and Y. We set $m = |A - A|$ and $m_0 = \lfloor n/2 + 10^{-7}n \rfloor$; thus, $m \ge m_0$ by (12).

CASE 1: $|X| < (m - n/2)/10^6$ and $|Y| < (m - n/2)/100$.

To construct A, we first choose the set $R \cup X^b \cup Y^c$ of cardinality i := $|R \cup X^b \cup Y^c| \leq (m - n/2)/99$ and then select other elements of A. By (13) and in view of $A \cap (A - A) = \emptyset$, the number of sets A satisfying all of the assumptions is at most

$$
\sum_{m \ge m_0} \sum_{i=1}^{\lfloor (m-n/2)/99 \rfloor} \binom{n}{i} 2^{n-m} \le n^2 \max_{m \ge m_0} \left(\frac{n}{\lceil (m-n/2)/99 \rceil} \right) 2^{n-m}
$$

$$
\le n^2 \max_{m \ge m_0} \left(\frac{99n e}{m-n/2} \right)^{(m-n/2)/99+1} 2^{n-m}
$$

$$
\le n^2 \max_{m \ge m_0} (2.7 \cdot 10^9)^{(m-n/2)/99+1} 2^{n-m}
$$

$$
\le n^2 \max_{m \ge m_0} 2^{((m-n/2)/99+1) \ln(2.7 \cdot 10^9)/\ln 2 + (n-m)}
$$

$$
\le \max_{m \ge m_0} 2^{0.32(m-n/2)+(n-m)+32}
$$

$$
= 2^{0.32(m_0-n/2)+(n-m_0)+32}
$$

$$
= O(2^{n/2-0.68 \cdot 10^{-7} n}).
$$

CASE 2: $|X| < (m - n/2)/10^6$ and $|Y| \ge (m - n/2)/100$.

Again, we build a set A in several steps. First we choose R and X^b . Then, we select $||A|/2$ elements of $A \setminus (R \cup X^b)$ and, finally, the remaining $|A| - |R \cup X^b|$ $||A|/2$ elements of A. More formally, for a given R and X, instead of counting sum-free sets A with $A \supseteq (R \cup X^b)$, we shall estimate the number w of pairs of sets $(Z, A \setminus (R \cup X^b \cup Z))$, where $Z \subseteq A \setminus (R \cup X^b)$ and $|Z| = |A|/2|$. Our hope is that, since Z contains half of the elements of A, it will contain a considerable

fraction of elements of Y^c and thus substantially decrease the number of choices for the elements from $A \setminus (R \cup X^b \cup Z)$.

For given positive integers k and l, let us count such pairs with $|A| = k$ and $|R \cup X^{b}| = \ell$. We first estimate the number $w'_{k,\ell}$ of the pairs $(Z, A \setminus (R \cup X^{b} \cup Z))$ for which

$$
(14) \t\t |Z \cap Y^c| \le |Y|/3.
$$

Thus, we fix set A and count the number of all subsets Z of A with $Z \subset$ $A \setminus (R \cup X^b)$, $|Z| = |k/2|$ for which (14) holds. Equivalently, we may estimate the probability that for the random subset Z , chosen uniformly at random from all subsets of $A \setminus (R \cup X^b)$ with $||A|/2$ elements, we have $|\mathcal{Z} \cap Y^c| < |Y|/3$. Note that the random variable $\mathcal{Y} = \mathcal{Z} \cap Y^c$ has the hypergeometric distribution with parameters $|A|-|R\cup X^b|$, $|Y|$, and $||A|/2|$. In particular, for the expectation of $\mathcal Y$ we get

$$
\frac{|Y|\cdot ||A|/2|}{|A|-|R\cup X|} > \frac{|Y|}{2}.
$$

Hence, Lemma 5 gives

$$
\begin{aligned} \text{Prob}\{|\mathcal{Z} \cap Y^c| \le |Y|/3\} &= \text{Prob}\{|\mathcal{Y}| \le |Y|/3\} \\ &\le \exp(-|Y|/100) \le \exp\left(-\frac{m_0 - n/2}{10^4}\right). \end{aligned}
$$

Thus, to estimate $w'_{k,\ell}$, it is enough to bound the number of choices for A and multiply the result by

$$
\binom{k-\ell}{\lfloor k/2 \rfloor} \exp\Big(-\frac{m_0-n/2}{10^4}\Big).
$$

Consequently, from the assumptions we have $|R - R| \ge n/2 - 3 \cdot 10^{-17}n$, and $\ell \leq 3(m - n/2)/10^6$, so that

$$
\frac{w'_{k,\ell}}{\binom{k-\ell}{\lfloor k/2 \rfloor}} \leq \sum_{m \geq m_0} \binom{n}{\ell} 2^{n/2+3 \cdot 10^{-17} n} \exp\left(-\frac{m_0 - n/2}{10^4}\right)
$$

\n
$$
\leq n \binom{n}{\lceil 3(m_0 - n/2)/10^6 \rceil} 2^{n/2+3 \cdot 10^{-17} n} \exp\left(-\frac{m_0 - n/2}{10^4}\right)
$$

\n
$$
\leq n \left(\frac{10^6 n}{m_0 - n/2} \cdot e^{-32}\right)^{3(m_0 - n/2)/10^6 + 1} 2^{n/2 + 3 \cdot 10^{-17} n}
$$

\n(15)
$$
= O(n(10^{13}e^{-32})^{3 \cdot 10^{-13} n} 2^{n/2+3 \cdot 10^{-17} n}) = O(2^{n/2 - 2 \cdot 10^{-13} n}).
$$

Now we estimate the number of pairs $w_{k,\ell}''$ ($|A| = k$ and $|R \cup X^b| = \ell$) for which (14) does not hold. Note that in this case

$$
|(R \cup X^{b} \cup Z) - (R \cup X^{b} \cup Z)| \ge |R - R| + |Y|/3
$$

\n
$$
\ge n/2 - 3n/10^{17} + (m - n/2)/300
$$

\n
$$
\ge n/2 + (m - n/2)/400.
$$

Hence, choosing first $R \cup X^b$, then Z from at most $n - |(R \cup X^b) - (R \cup X^b)|$ elements and, finally, selecting $A \setminus (R \cup X^b \cup Z)$ from the available set of not more than $n/2 - (m - n/2)/400 - \lfloor |A|/2 \rfloor$ elements, we arrive at

$$
w_{k,\ell}'' \leq \sum_{m \geq m_0} {n \choose \ell} {n/2 + 3 \cdot 10^{-17}n \choose \lfloor k/2 \rfloor} {n/2 - (m - n/2)/400 - \lfloor k/2 \rfloor \choose k - \ell - \lfloor k/2 \rfloor}.
$$

Because of the combinatorial identity

$$
\binom{n/2+3\cdot 10^{-17}n}{\lfloor k/2\rfloor}\binom{n/2+3\cdot 10^{-17}n-\lfloor k/2\rfloor}{k-\ell-\lfloor k/2\rfloor}=\binom{n/2+3\cdot 10^{-17}n}{k-\ell}\binom{k-\ell}{\lfloor k/2\rfloor}.
$$

we can bound $\frac{w''_{k,\ell}}{k-\ell}$ from above by $(\tilde{k}/2)$

$$
2^{n/2+3\cdot10^{-17}n} \sum_{m\geq m_0} {n \choose \ell} \frac{\binom{n/2-(m-n/2)/400-[k/2])}{k-\ell-[k/2]}}{\binom{n/2+3\cdot10^{-17}n-[k/2]}{k-\ell-[k/2]}} \\
\leq 2^{n/2+3\cdot10^{-17}n} \sum_{m\geq m_0} \left(\frac{en}{\lceil 3(m-n/2)/10^6 \rceil}\right)^{3(m-n/2)/10^6+1} \\
\times \left(\frac{n/2-(m-n/2)/400-[k/2]}{n/2+3\cdot10^{-17}n-[k/2]}\right)^{0.1n} \\
\leq n2^{n/2+3\cdot10^{-17}n} \left(\frac{en}{3(m_0-n/2)/10^6}\right)^{3(m_0-n/2)/10^6+1} \\
\times \left(1-\frac{m_0-n/2}{200n}\right)^{0.1n} \\
= O(n2^{n/2+3\cdot10^{-17}n}10^{4(m_0-n/2)/10^5}2^{-(m_0-n/2)/2\cdot10^3}) \\
= O(2^{n/2-10^{-12}n}).
$$

Note that if by $\sigma_{k,\ell}$ we denote the number of all sum-free sets A with $|A| = k$ and $|R \cup X^b| = \ell$, then

$$
\sigma_{k,\ell} \binom{k-\ell}{\lfloor k/2 \rfloor} = \left| \{ (Z, A \setminus (R \cup X^b \cup Z) : |A| = k, |R \cup X^b| = \ell, A \in \text{SF}[G] \} \right|
$$

= $w'_{k,\ell} + w''_{k,\ell}$.

 (16)

Hence, from (15) and (16) we infer that the number of subsets $A \in SF[G]$, for which $|X| < (m - n/2)/10^6$ but $|Y| \ge (m - n/2)/100$, is bounded from above by

$$
\sum_{k} \sum_{\ell} \frac{w'_{k,\ell} + w''_{k,\ell}}{\binom{k-\ell}{\lfloor k/2 \rfloor}} = O\big(n^2 \big(2^{n/2 - 2 \cdot 10^{-13}n} + 2^{n/2 - 10^{-12}n}\big)\big) = O\big(2^{n/2 - 10^{-13}n}\big).
$$

CASE 3: $|X| > (m-n/2)/10^6$.

As in the previous case we first select all elements from R and then count pairs $(Z, A \setminus (R \cup Z))$, where $Z \subseteq A \setminus R$ and $|Z| = |A|/2$.

Thus, fix $k = |A|$ and $\ell = |R|$. Let $\tilde{w}'_{k,\ell}$ count pairs $(Z, A \setminus (R \cup Z))$ such that $Z \subseteq A \setminus R$, $|Z| = \lfloor |A|/2 \rfloor$, and the number $s(Z, A)$ of elements $(b', b'') \in X$ for which $b', b'' \in R \cup Z$ is at most $|X|/10$. As before, we estimate $s(\mathcal{Z}, A)$ for the random subset Z of $A \setminus R$ of $||A|/2$ elements.

The distribution of $s(Z, A)$ is neither hypergeometric nor binomial, so we cannot apply Lemma 5 directly. Thus, instead of \mathcal{Z} , we study the random set \mathcal{X} , obtained by putting an element $x \in A \setminus R$ into X with probability 2/5, independently for each $x \in A \setminus R$. Since the function $s(\cdot, A)$ is non-decreasing, we have

$$
\begin{aligned} \mathrm{Prob}\{s(\mathcal{Z},A)\leq |X|/10\} &\leq \mathrm{Prob}\{|\mathcal{X}|\geq |\mathcal{Z}|\} \\ &\quad + \mathrm{Prob}\big\{\{s(\mathcal{X},A)\leq |X|/10\} \wedge \{|\mathcal{X}|\leq |\mathcal{Z}|\}\big\} \\ &\leq \mathrm{Prob}\{|\mathcal{X}|\geq \lfloor |A|/2\}\} + \mathrm{Prob}\{s(\mathcal{X},A)\leq |X|/10\}. \end{aligned}
$$

Note that X is a binomially distributed random variable with expectation

$$
\mathbf{E}\mathcal{X} = \frac{2}{5}|A \setminus R| \leq \frac{2}{5}|A|.
$$

Furthermore, the random variable $s(X, A)$ is the sum of |X| zero-one independent random variables $\{I_d: (b', b'') \in X\}$, where for each $(b', b'') \in X$,

$$
Prob{I_d = 1} = (2/5)^{2 - |\{b', b''\} \cap (A \setminus R)|},
$$

so that

$$
Es(\mathcal{X}, A) \geq \frac{4}{25}|X|.
$$

Hence, Lemma 5 implies that

$$
Prob\{s(Z, A) \le |X|/10\} \le \exp(-|A|/50) + \exp(-|X|/100)
$$

$$
\le 2\exp(-|X|/100) \le 2\exp\left(-\frac{m_0 - n/2}{10^6}\right).
$$

Thus, as in the Case 2, since $|R - R| \ge n/2 - 3 \cdot 10^{-17}n$, one obtains

$$
\frac{\tilde{w}'_{k,\ell}}{\binom{k-\ell}{\lfloor k/2 \rfloor}} \leq \sum_{m \geq m_0} \binom{n}{\ell} 2^{n-|R-R|} 2 \exp\left(-\frac{m_0 - n/2}{10^6}\right)
$$

$$
\leq n^{n^{6/7}} 2^{n/2 + 4 \cdot 10^{-17} n + 1} \exp\left(-10^{-16} n\right)
$$

$$
= O(2^{n/2 - 10^{-17} n}).
$$

In order to estimate the number $\tilde{w}''_{k,\ell}$ of pairs $(Z, A \setminus (R \cup Z))$ such that $|A| = k$, $|R| = \ell$ and $s(Z, A) > |X|/10$, we remark that in this case

$$
|(R\cup Z)-(R\cup Z)|\geq |R-R|+\frac{|X|}{10}\geq \frac{n}{2}+\frac{n}{10^{15}}.
$$

Hence

$$
\frac{\tilde{w}_{k,\ell}''}{\binom{k-\ell}{\lfloor k/2 \rfloor}} \leq \sum_{m \geq m_0} \binom{n}{\ell} \binom{n/2 + 3 \cdot 10^{-17} n}{\lfloor k/2 \rfloor} \cdot \binom{n/2 - (2m-n)/3 \cdot 10^7 - \lfloor k/2 \rfloor}{k - \ell - \lfloor k/2 \rfloor}.
$$

Thus, arguing as in Case 2, one can bound $\frac{\tilde{w}_{k,\ell}^{u}}{k-\ell\gamma}$ from above by

$$
n^{n^{6/7}} \sum_{m \ge m_0} 2^{n/2 + 3 \cdot 10^{-17} n} \left(\frac{n/2 - n/10^{15}}{n/2 + 3 \cdot 10^{-17} n} \right)^{k - \ell - \lfloor k/2 \rfloor}
$$

$$
\le n^{n^{6/7}} 2^{n/2 + 4 \cdot 10^{-17} n} \left(1 - \frac{1}{10^{15}} \right)^{0.1n}
$$

$$
\le n^{n^{6/7}} 2^{n/2 + 4 \cdot 10^{-17} n} 2^{-10^{-15} n} = O(2^{n/2 - 10^{-16} n}).
$$

Consequently, as in the previous case, one can bound the number of sum-free subsets A of G with $|X| > (m - n/2)/10^6$ by

$$
\sum_{k}\sum_{\ell}\frac{\tilde{w}_{k,\ell}^{\ell}+\tilde{w}_{k,\ell}^{\prime\prime}}{\binom{k-\ell}{\lfloor k/2\rfloor}}=O(n^2(2^{n/2-10^{-17}n}+2^{n/2-10^{-16}n}))=O(2^{n/2-10^{-18}n}).
$$

This completes the proof of the Main Lemma.

References

- [A91] N. Alon, *Independent sets in regular graphs and sum-free subsets of finite groups,* Israel Journal of Mathematics 73 (1991), 247-256.
- [B98] Y. Bilu, *Sum-free sets and related sets,* Combinatorica 18 (1998), 449-459.

- ICE90] P. J. Cameron and P. Erd6s, *On the number of sets of integers with various properties,* in *Number Theory* (R. A. Mollin, ed.), de Gruyter, Berlin, 1990, pp. 61-79.
- [JLR00] S. Janson, T. Luczak, and A. Rucifiski, *Random Graphs,* Wiley, New York, 2000.
- [Ke60] J. H. B. Kemperman, *On small sumsets in Abelian group,* Acta Mathematica 103 (1960), 63-88.
- [Kn53] M. Kneser, *Abschtzung der asymptotischen Dichte von Summenmengen,* Mathematische Zeitschrift 58 (1953), 459-484.
- [Kn55] M. Kneser, *Ein Satz über abelschen Gruppen mit Anwendungen auf die* Geometrie der Zahlen, Mathematische Zeitschrift 61 (1955), 429-434.
- **[LS]** V. Lev and T. Schoen, *Cameron-Erd6s modulo a prime,* submitted.